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ABSTRACT

As satellites become smaller or too far away to visually resolve their physical details via high-resolution imagery,
other techniques must be used to characterize and describe them. One promising method is analyzing how the
reflected light from a satellite varies as a function of time or phase angle. By analyzing the photometric intensity of
the reflected light versus the solar phase angle of the space object, we hope to see a characteristic distribution that is
indicative of a certain shape. One way to enhance the analysis is to obtain as many observations of a satellite either
through multiple passes over time or by observing a particular satellite pass from numerous locations. This paper is
a case study limited to the following question: “Given a certain scenario (orbit, engagement, shape, material,
attitude, etc.) and a central sensor location, what is the optimal arrangement of four deployable telescopes for
determining the shape of the satellite from its photometric signature?” Certain shapes have a characteristic
magnitude-phase angle distribution, especially in its lower boundary which is independent of satellite material and
driven primarily by diffusive reflection. The optimum arrangement will be determined by how much of the phase
angle coverage is met to determine the lower boundary of the magnitude-phase angle distribution. We will
discretize the area surrounding the central site and examine how much of the data is required to determine the
satellite shape. Some constraints might be required, such as keeping one telescope in each quadrant or requiring
there be a certain distance between sensor sites, to ensure that the optimal arrangement is not a trivial one (i.e. four
telescopes at the same location).

1. INTRODUCTION

Space situational awareness (SSA) is the requisite current and predictive knowledge of the space environment and
the operational environment upon which space operations depend — including physical, virtual, and human domains
—as well as all factors, activities, and events of friendly and adversary space forces across the spectrum of conflict
(Codified definition in Joint Pub 3-14, Space Operations). Thus it is helpful to be able to track earth-bound satellites
in order to know and predict their position, movement, size, and physical features. However, there are many
satellites in orbit that are simply too small or too far away to resolve by conventional optical imaging. Fig. 1 shows
the degradation of image quality with increasing distance and decreasing satellite size. By analyzing a satellite’s
photometric light curve, we hope to obtain some of the same information that one can obtain from high-resolution
images.

Fig. 1. Degradation of high-resolution images with increasing distance and/or decreasing satellite size.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 2009 2 REPORTTYPE 00-00-2009 to 00-00-2009
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
Optimizing site locations for deter mining shape from photometric light £b. GRANT NUMBER
curves

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Air Force Academy,Department of Physics USAF Academy REPORT NUMBER
,C0,80840
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
2009 Advanced M aui Optical and Space Surveillance Technologies Conference, 1-4 Sep, Maui, HI.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 11
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Light curves are created by measuring the intensity of reflected sunlight off of the object as it passes overhead. The
intensity is dependent on a variety of factors to include the size, shape, orientation, and material composition of the
satellite. When observing a satellite from different sites, the solar phase angle (i.e. the angle between the site,
satellite and sun as illustrated in Fig. 2) determine a great deal about the nature of the light curve. We are interested
in determining whether or not there is an optimal arrangement of these angles in order to obtain the most
information about the satellite in question. Therefore, we will investigate a variety of pass orientations and site
locations and compare the resulting light curves.

Orbiting Satellite

Mobile Optical
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Fig. 2. The photometric light curve of a satellite depends on the geometry of the sensor site, satellite, and
sun (drawing courtesy of Betty Duncan, Maui High Performance Computing Center).

2. SIMULATED DATA

All data used in this study was created using a photometric modeling tool developed in MATLAB® by the Directed
Energy Directorate of the Air Force Research Laboratory (AFRL). The simulation uses two line elements (TLES) to
determine satellite pass geometry and allows a user to define satellite size, shape, material, and attitude as well as
observation location. This tool has been used in the past by AFRL to investigate various non-resolvable space
object identification problems such as analyzing when single facets become visible or illuminated by the sun as
viewed from closely spaced observers [1]. A version of this tool has also been used to investigate glints from
cubesats [2].

The first step to choosing the optimal site locations is to decide on criteria for determining what is optimal, which
itself depends on the question one is trying to answer. For this study, an optimal combination of sites would be one



that can determine the satellite’s shape with the highest certainty. We used a version of the photometric modeling
tool that created Monte Carlo scans of different shapes compiled into intensity versus solar phase angle distributions
as our analysis “standard”. These distributions are influenced by a satellite’s shape, size, and material. As seen in
Fig. 3, each shape has a unique lower bound (or minimum intensity envelope) and, in particular, an asymptotic
cutoff angle. It is thought that the lower bound curve is governed by a satellite’s diffuse reflection whereas the rest
of the distribution is a combination of both its diffuse and specular reflection [1]. For instance, for a cube-shaped
satellite (top middle panel), the minimum intensity has a cutoff solar phase angle of 90°, which corresponds to a
facet normal visible to an observer being 90° to the sun. For a tetrahedron, the cutoff solar phase angle is 54.7°

( ") corresponding to the angle between a face and an edge [3]. The relative position of the distribution
along the intensity axis is indicative of the material and size of a satellite, and is not related to its shape.
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Fig. 3. The top graphs (color plots) are distributions of a satellite’s reflected intensities (y-axis) with respect
to phase angle (x-axis) at varying attitudes. The yellow line in the bottom graphs are histograms of the
number of observations with respect to phase angle. The red line in the bottom curve is a histogram of the
number of observations with no reflected light with respect to phase angle (Figures courtesy of Dr. Doyle
Hall (Boeing) and Mr. Paul Kervin (AFRL) and similar to those in Reference [1])

Rather than compare our sample data to the entire distributions, we only used the lower bound curves of the Monte
Carlo distributions. These curves were extracted from the graphs in Fig. 3 above by binning the distributions in one-
degree solar phase angle intervals and selecting the minimum intensity data point in each bin. The first points of
each curve were then normalized to the same value to account for differences in material. Three shapes were
initially chosen for this case study, a tetrahedron, cube, and octahedron. Their lower bound curves derived from the
Monte Carlo scans are shown in Fig. 4. Based on the extreme similarity between the cube and the octahedron, the
octahedron was set aside until an algorithm was devised that could distinguish between a cube and a tetrahedron.
The lower bound curves and respective cutoff angles were then compared to a sample set of simulated photometric
data as described in the next section.
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Fig. 4. Lower bound curves for three chosen shapes.

2.1. Multiple Sensor Sites

Fig. 5 shows a sample orbit for SSN 13736 (DMSP F6) which has an altitude of 820 kilometers, an inclination of
98.62°, a right ascension of 55.78°, and an eccentricity of 0.0008. The sensor site location chosen is the Advanced
Electro-Optical Site (AEOS) on Haleakala, Maui, Hawaii. We define the multi-site domain as a circular region
centered on the central sensor location divided into four quadrants akin to Cartesian coordinates. The sites are
identified by their radius and angle (clockwise from North) as illustrated in Fig. 5.

|

|-—

Fig. 5. Sample satellite pass (left) and the multi-site definition (right).

The spatial resolution of the multi-site domain is 1 degree and 10 radii levels, with each radius representing 111
kilometers or a single degree of latitude and longitude, giving the domain a total diameter of 2,220 kilometers and
3,600 sites. We modified the AFRL photometric tool to run in a parallel processing environment, creating two
parallel versions, one that would take a single sensor site and process the number of possible passes of a specified
satellite throughout a specified time period such as a year [4]. The second version was used for this study and
allowed us to process 3,600 sensor sites for a given satellite pass on a specified date and time period. Fig. 6 shows

the basic flow of the parallel site version.



Login node Leader Processor

|
Zsubmit.pbs Zsiteanalysis.m o | |
+Sets# nodes +Sets Up input parameters "‘h |
*Sets# proc / node »Pass Params i |
»Body Params |
l #Model Params o o hn |
F 7 > Attitude Params
sitedirector.m +Assigns locations to processors Follower Processor
sinitializes MatLab MPI +Leaderalso processes locations
+Sets up paths and folders X .
*Finds nodes / processors pass_efletion_model.m | *

+Allocates zanalysis.m to processors

make_atifuds structue m

- create neport
Bad_gkbe_parimsm
" b 2 ;l:l_;zss_

Output.mat e—

*Processor# Results \ il ~ finkgay | (R

+Run Time \ i+ make_displayiining funcion) draw_ghobem

P drw_beodym

\ MODEL o i

Fig. 6. Flow chart of the parallel version of the multi-site photometric modeling tool.

An example of the data from all the sensor sites can be seen in Fig. 7 below. On the left is the ground track of the
satellite along with all 3,600 sensor locations. The central location (AEQOS) is indicated by the crossed circle in the
center. The dark blue regions to the far right of the ground track indicate sensor sites which could not see the
satellite and thus had no photometric light curve. The lighter blue region surrounding the ground track indicate that
the sensor sites saw a similar light curve as AEOS. As one then moves to the left, the sensor sites see increasingly
different light curves than AEOS. Six representative sensor sites are chosen to illustrate the difference in the light
curves. The corresponding magnitude-phase angle distribution for the six sites along with the AEOS site are shown
in the graph to the right.
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Fig. 7. Example of 3,600 sensor sites centered along AEOS for a satellite track. The colored circles on the
left plot corresponds to the colored lines in the magnitude-phase angle plot of the right. The AEOS
magnitude-phase-angle distribution is the white crossed data points on the far right of the right plot.



Since each quadrant contains 900 sites, there are 656 billion possible site combinations. Analysis of all possible site
combinations would ultimately require high performance computing. Thus we initially limited the number of
combinations so that a viable shape-determination algorithm could be developed serially. Once an algorithm shows
promise, it can be applied to all possible site combinations. The combination that returns the highest certainty
(along with the correct answer) would become the optimum site combination. Different pass geometries will most
likely yield different optimal combinations, and eventually one could combine this data into an optimal combination
for any geometry.

To compile a sample data set, we combined data from one satellite pass observed from four different sensor
locations each which had approximately 50-100 data points for a total sample data set size of 200-400 points.
However, since we only needed a lower bound curve from the sample data, we had to decimate the sample set. This
was done in three steps and is illustrated in Fig. 8. The first step was to bin the data into one degree phase angle
intervals and keep the lowest intensity data point. While all of the points remaining at this point are technically on
the sample set minimum curve, they might stand out as not being real candidates for an actual lower bound curve.
Thus for the second step, we removed any point which was brighter (i.e. smaller magnitude) than the point to the left
of it (at a smaller phase angle). The final step was based on the fact that lower bound curves are similar to
increasing/decreasing functions meaning that the concavity of its shape should not change. Accordingly, we
calculated a slope between all neighboring points. If a slope was less steep than the preceding slope, the trailing
point was discarded. Fig. 8 below shows how a sample data set evolves into a lower bound curve based on the
above three steps.
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Fig. 8. An initial data set is trimmed to exclude points not likely to be on the lower bound curve.



Now that the sample sets and comparison sets have been built, the question remains as to how to compare them.
Three methods were explored in this study, mean squared error (MSE), curve fitting, and analysis of variance
(ANOVA) of residuals. These methods are discussed in the next section except for the ANOVA method as it was
quickly discovered to be completely unreliable.

2.2. Mean Squared Error

The mean squared error was found by calculating the difference between each sample set data point and the intensity
value from the known lower bound curves corresponding to the phase angle bin. The sample data set was shifted so
that the first sample point had zero difference since we want to negate material or size differences. The mean
squared error was then calculated for each shape, and the shape with the lowest MSE was the determined shape. Eq.
(1) shows how MSE was calculated.

n

z [(Intensity(qﬁ)Shape - Offsetshape)— Samplelntensity(¢)]2 1)
14
MSE =

shape

# Observations

2.3. Curve Fitting

This method stemmed from the observation that lower bound curves seem to behave like exponential functions.
Data sets were trimmed such that they had no points with phase angles greater than the hypothesized cutoff angle, ¢,
(55° for tetrahedron and 90° for cube), and then fit with a non-linear least squares (trust region) scheme. The
functional form, shown in Eq. (2), was chosen because of its asymptotic behavior. All constants were constrained to
be positive to keep the asymptote in the correct direction.
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The shape whose fit had the lowest reduced chi-squared value () was the answer returned by the algorithm. One
advantage of this method was that it gave a metric (y2) for comparing the certainty of different combinations.

3. EXPERIMENTAL RESULTS

For the purpose of testing different shape-determination algorithms, we took a subset of all possible 3,600 sensor
locations, using 3 radii and 3 angles per quadrant for a total of 6,561 combinations. Each test case was a specific
shape (tetrahedron or cube) and satellite pass. Table 1 below lists the four satellite element sets used in this study
and the six time periods in which we determined passes of various orientations to the terminator. Thus there was a
total of 12 test cases. All test cases had the same bidirectional reflectance distribution (BRDF), a Cook-Torrance
BRDF of 30% diffusive and 30% specular reflectance. Additionally, the satellite attitudes were the same fixed ram-
nadir orientation with the body x-axis pointing to the ram direction and the body z-axis pointing to nadir. Finally, all
the simulated objects had a size perfectly inscribable into a one meter diameter sphere



Table 1. Satellite passes used to create multiple site locations.

SSN (Common Name) Date Start UT End UT
13736 (DMSP 5D-2 F6) January 1, 2007 05:00:00 06:00:00
28773 (ASTRO E2) January 5, 2007 15:15:00 16:15:00
28773 (ASTRO E2) February 5, 2007 04:15:00 05:15:00
25544 (ISS) February 12, 2007 04:15:00 05:15:00
28773 (ASTRO E2) June 26, 2007 07:15:00 08:15:00
30776 (FALCONSAT 3) January 1, 2008 15:15:00 16:15:00

The results for the MSE method were unimpressive. When applied to the 12 test cases, this method gave the correct
answer 6 times. All six of these cases were cubes however, and all tetrahedron cases failed. The total success rate
was 53%, with the cube success rate at 100% and the tetrahedron success rate at 5%. The algorithm had a tendency
to return an answer of cube, and an examination of our sample data showed why. The lower bound curves for our
sparser four-site data set did not match those of the Monte Carlo scans. This could be due to the stabilized attitude
of the simulated satellites and possibly to the limited number of satellite pass orientations used in this study.

For the curve fitting algorithm method, 7 of the 11 cases (one case failed) resulted in a correct answer. The total
success rate was once again 53%, with the cube success rate at 37% and the tetrahedron success rate at 71%. Fig. 9
shows the results for the curve fitting method on a case by case basis. Fig. 10 is a specific example for the curve
fitting method for Case 6 (SSN 28773, January 5, 2007) for a tetrahedron object. Although this example converged
to the correct shape nearly 100% of the time, one can see that when compared to the actual data (black line), to first
order the cube fit (green line) appears to match the data better than the tetrahedron fit (red line). However, the 4
for the tetrahedron fit and data was better than the one for the cube fit and data.

Curve Fitting Results 1- 13736 cube

| 2: 13736 tetra
11 3. 25544 cube
— 4; 25544 tetra
5. 28773(01/05) cube
6: 28773(01/05) tetra
N/A 7: 28773(02105) cube

8: 28773(02/05) tetra

mWrong | o 58773(06/26) cube
m Correct 10: 28773(06/26) tetra
. 11: 30776 cube

0 20 40 60 80 100 12: 30776 tetra

Case

R W Ul

Percent

Fig. 9. The experimental results for the curve fitting algorithm. The numbered cases are listed at right.
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Fig. 10. One example used in the curve fitting algorithm for SSN 28773, January 1, 2007 (tetrahedron).

4. DISCUSSION

The relative failure of both these methods seems somewhat suspect based on the clear difference in lower bound
curves for tetrahedrons and cubes. A closer investigation, as shown in Fig. 11, reveals that the lower bound curves
for our simulated data does not bear a striking resemblance to the Monte Carlo scans shown earlier (Fig. 3). While
the cube data (left plot) appears to initially follow the lower bound curve seen in the Monte Carlo scans, between
80° and 120° of phase angle there are no low intensity points to demonstrate an asymptotic relationship. The same
observation holds for the tetrahedron data (right plot); there are no low intensity data points until nearly 30° of phase
angle past the predicted 54.7° phase angle cutoff. How can we compare to asymptotic curves if our simulated data
doesn’t show the same pattern? The pattern below most likely lies in that the simulated satellites all had stabilized
attitude, specifically nadir and ram pointing. The Monte Carlo scans were created by simulating the shape in
hundreds of different orientations for each phase angle. Since the same face is observed nearly constantly for each
pass, we are not seeing the orientations that drive the asymptotic lower bound curves. Only in very rare cases will
either of these methods be viable in determining the shape of a stable satellite.



Fig. 11. Distribution of all simulated cube (left panel) and tetrahedron (right panel) data for the 12 test cases.

5. CONCLUSIONS

The two methods attempted, mean squared error and curve fitting, both failed to convincingly identify satellite shape
using simulated data from combinations of four sensor sites. Although the MSE method selected the cube 100% of
the time, its correctness could be attributed to a bias toward selecting the cube. The curve fitting method appears to
correctly choose the tetrahedron more often than not, but more work needs to be done in order to quantify the
confidence in this method (especially for other shapes). The main issue however, could be the fact that we are
making an erroneous comparison. The Monte Carlo scans are based on hundreds of attitudes for any given phase
angle, whereas our simulated sensor site data contained a very small range of attitudes due to the stability of the
simulated satellites. The question of optimal site locations cannot be definitively answered due to the inability of
either algorithm to succeed at shape determination. Currently, we are working to incorporate simulated data for a
spinning object using the same shapes and satellite passes in order to see if the data is more similar to the Monte
Carlo scans.
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